organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(6-Bromohexyl)-1,5-dimethyl-1H-1,5benzodiazepine-2,4(3H,5H)-dione

Rchida Dardouri,^a Fouad Ouazzani Chahdi,^a Natalie Saffon,^b El Mokhtar Essassi^a and Seik Weng Ng^c*

^aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, ^bService Commun Rayons-X FR2599, Université Paul Sabatier, Bâtiment 2R1, 118 route de Narbonne, Toulouse, France, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 6 October 2010; accepted 7 October 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.051; wR factor = 0.153; data-to-parameter ratio = 24.4.

The seven-membered ring in the title compound, C₁₇H₂₃BrN₂O₂, adopts a boat-shaped conformation (with the C atoms of the fused-ring as the stern and the methine C atom as the prow). The bromohexyl substituent occupies an equatorial position, with the hexyl chain exhibiting an extended conformation. Weak intermolecular C-H···O hydrogen bonding is present in the crystal structure.

Related literature

For the crystal structure of 1,5-dimethyl-1,5-benzodiazepin-2,4-dione, see: Mondieig et al. (2005).

Experimental

Crystal data C17H23BrN2O2

 $M_r = 367.28$

Monoclinic, $P2_1/n$	
a = 7.5214 (1) Å	
b = 9.3693 (2) Å	
c = 23.8686 (5) Å	
$\beta = 91.750 \ (1)^{\circ}$	
V = 1681.24 (6) Å ³	

Data collection

Bruker X8 APEXII diffractometer	25590 measured reflections
Absorption correction: multi-scan	4897 independent reflections
(<i>SADABS</i> ; Sheldrick, 1996)	3478 reflections with $I > 2\sigma(I)$
$T_{min} = 0.526, T_{max} = 0.791$	$R_{\text{int}} = 0.045$
Refinement	

Z = 4

Mo $K\alpha$ radiation

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

 $\mu = 2.45 \text{ mm}^{-1}$

T = 293 K

$R[F^2 > 2\sigma(F^2)] = 0.051$	201 parameters
$vR(F^2) = 0.153$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 1.92 \text{ e } \text{\AA}^{-3}$
897 reflections	$\Delta \rho_{\rm min} = -0.68 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C7 - H7B \cdot \cdot \cdot O1^{i}$	0.96	2.58	3.430 (3)	147
$C7 - H7C \cdots O2^{ii}$	0.96	2.51	3.471 (3)	174
$C11 - H11B \cdots O1^{ii}$	0.96	2.60	3.551 (3)	173

Symmetry codes: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2008): cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5049).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Mondieig, M., Négrier, Ph., Léger, J. M., Benali, B., Lazar, Z., Elassyry, A., Jarmouni, C., Lakhrissi, B. & Massoui, M. (2005). Anal. Sci. X-Ray Struct. Anal. Online, 21, x145-x146.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2010). E66, o2804 [doi:10.1107/S1600536810040122]

3-(6-Bromohexyl)-1,5-dimethyl-1H-1,5-benzodiazepine-2,4(3H,5H)-dione

R. Dardouri, F. Ouazzani Chahdi, N. Saffon, E. M. Essassi and S. W. Ng

Comment

The methylene part of 1,5-dimethyl-1,5-benzodiazepine-2,4-dione is relatively acidic, and one proton can be abstracted by using potassium *t*-butoxide; the resulting carbanion can undergo a nucleophilic substitution with a dibromoalkane to form 3-substituted derivatives. In this study, the compound is reacted with 1,6-dibromohexane the title compound (Scheme I, Fig. 1).

Experimental

To a solution of the potassium *t*-butoxide (0.42 g, 3.6 mmol) in DMF (15 ml) was added 1,5-dimethyl-1,5-benzodiazepine-2,4-dione (0.50 g, 2.4 mmol) and 1,6-dibromodohexane (0.40 ml, 2.88 mmol). Stirring was continued for 24 h. The reaction was monitored by thin layer chromatography. The mixture was filtered and the solution evaporated to give colorless crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to $1.2-1.5U_{eq}(C)$.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $C_{17}H_{23}BrN_2O_2$ at the 50% probability level; hydrogen atoms are drawn as arbitrary radius.

3-(6-Bromohexyl)-1,5-dimethyl-1H-1,5-benzodiazepine- 2,4(3H,5H)-dione

Crystal data	
C ₁₇ H ₂₃ BrN ₂ O ₂	F(000) = 760
$M_r = 367.28$	$D_{\rm x} = 1.451 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 5411 reflections
a = 7.5214(1) Å	$\theta = 2.3 - 26.0^{\circ}$
<i>b</i> = 9.3693 (2) Å	$\mu = 2.45 \text{ mm}^{-1}$
c = 23.8686(5) Å	T = 293 K
$\beta = 91.750 \ (1)^{\circ}$	Prism, colorless
$V = 1681.24 (6) \text{ Å}^3$	$0.30 \times 0.20 \times 0.10 \text{ mm}$

Z = 4

Data collection

4897 independent reflections
3478 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.045$
$\theta_{\text{max}} = 30.0^{\circ}, \ \theta_{\text{min}} = 2.8^{\circ}$
$h = -10 \rightarrow 9$
$k = -13 \rightarrow 13$
$l = -28 \rightarrow 33$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.153$	H-atom parameters constrained
<i>S</i> = 1.01	$w = 1/[\sigma^2(F_0^2) + (0.082P)^2 + 1.8005P]$ where $P = (F_0^2 + 2F_c^2)/3$
4897 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
201 parameters	$\Delta \rho_{max} = 1.92 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.68 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	1.30982 (5)	0.07856 (4)	0.564211 (15)	0.04567 (14)
01	0.5859 (3)	0.4826 (2)	0.28329 (9)	0.0297 (4)
O2	0.1496 (3)	0.4797 (2)	0.35848 (10)	0.0351 (5)
N1	0.5074 (3)	0.7166 (2)	0.27741 (9)	0.0211 (4)
N2	0.1710 (3)	0.7124 (2)	0.33415 (9)	0.0231 (4)
C1	0.4344 (3)	0.8410 (3)	0.30158 (10)	0.0199 (5)
C2	0.5247 (4)	0.9710 (3)	0.29605 (11)	0.0247 (5)
H2	0.6331	0.9729	0.2783	0.030*
C3	0.4550 (4)	1.0961 (3)	0.31659 (12)	0.0278 (6)
H3	0.5153	1.1818	0.3119	0.033*
C4	0.2944 (4)	1.0944 (3)	0.34434 (12)	0.0266 (5)
H4	0.2476	1.1784	0.3585	0.032*
C5	0.2056 (4)	0.9665 (3)	0.35053 (11)	0.0251 (5)
H5	0.0991	0.9651	0.3693	0.030*
C6	0.2725 (3)	0.8394 (3)	0.32918 (10)	0.0203 (5)
C7	0.5848 (3)	0.7301 (3)	0.22189 (11)	0.0244 (5)
H7A	0.5875	0.6381	0.2042	0.037*

H7B	0.7036	0.7667	0.2259	0.037*
H7C	0.5137	0.7942	0.1992	0.037*
C8	0.5209 (3)	0.5879 (3)	0.30474 (11)	0.0215 (5)
C9	0.4425 (4)	0.5856 (3)	0.36297 (11)	0.0233 (5)
Н9	0.4770	0.6735	0.3827	0.028*
C10	0.2407 (4)	0.5863 (3)	0.35245 (11)	0.0237 (5)
C11	-0.0223 (3)	0.7209 (3)	0.32308 (12)	0.0281 (6)
H11A	-0.0647	0.6313	0.3084	0.042*
H11B	-0.0476	0.7951	0.2962	0.042*
H11C	-0.0807	0.7419	0.3573	0.042*
C12	0.5012 (4)	0.4579 (3)	0.39872 (12)	0.0291 (6)
H12A	0.4395	0.4608	0.4338	0.035*
H12B	0.4662	0.3709	0.3794	0.035*
C13	0.6995 (4)	0.4532 (3)	0.41145 (14)	0.0363 (7)
H13A	0.7388	0.5469	0.4239	0.044*
H13B	0.7603	0.4312	0.3772	0.044*
C14	0.7533 (4)	0.3430 (3)	0.45629 (14)	0.0372 (7)
H14A	0.7202	0.3782	0.4927	0.045*
H14B	0.6884	0.2551	0.4491	0.045*
C15	0.9504 (5)	0.3118 (4)	0.45750 (15)	0.0462 (8)
H15A	1.0143	0.4018	0.4588	0.055*
H15B	0.9794	0.2646	0.4228	0.055*
C16	1.0164 (4)	0.2199 (3)	0.50614 (13)	0.0360 (7)
H16A	1.0014	0.2709	0.5411	0.043*
H16B	0.9465	0.1331	0.5074	0.043*
C17	1.2095 (5)	0.1827 (5)	0.50011 (14)	0.0469 (8)
H17A	1.2768	0.2699	0.4953	0.056*
H17B	1.2219	0.1253	0.4666	0.056*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0511 (2)	0.0394 (2)	0.0454 (2)	0.00836 (15)	-0.01604 (15)	-0.00333 (14)
01	0.0329 (10)	0.0220 (9)	0.0342 (10)	0.0060 (8)	0.0014 (8)	-0.0021 (8)
O2	0.0311 (11)	0.0260 (10)	0.0482 (13)	-0.0106 (8)	0.0014 (9)	0.0044 (9)
N1	0.0222 (10)	0.0170 (9)	0.0243 (10)	0.0011 (8)	0.0034 (8)	-0.0001 (8)
N2	0.0189 (10)	0.0223 (10)	0.0283 (11)	-0.0039 (8)	0.0017 (8)	0.0011 (8)
C1	0.0204 (11)	0.0177 (11)	0.0215 (11)	0.0023 (9)	-0.0003 (9)	0.0006 (9)
C2	0.0231 (12)	0.0213 (11)	0.0299 (13)	-0.0023 (10)	0.0051 (10)	0.0017 (10)
C3	0.0310 (14)	0.0196 (12)	0.0329 (14)	-0.0041 (10)	0.0022 (11)	0.0000 (10)
C4	0.0279 (13)	0.0209 (12)	0.0309 (13)	0.0027 (10)	-0.0004 (10)	-0.0027 (10)
C5	0.0220 (12)	0.0259 (12)	0.0276 (13)	0.0017 (10)	0.0024 (10)	-0.0006 (10)
C6	0.0187 (11)	0.0195 (11)	0.0227 (11)	-0.0019 (9)	-0.0011 (9)	0.0008 (9)
C7	0.0242 (12)	0.0257 (12)	0.0234 (12)	0.0011 (10)	0.0033 (9)	-0.0011 (10)
C8	0.0193 (11)	0.0171 (11)	0.0281 (12)	-0.0003 (9)	-0.0020 (9)	-0.0003 (9)
C9	0.0266 (12)	0.0166 (11)	0.0264 (12)	-0.0020 (9)	-0.0009 (10)	0.0013 (9)
C10	0.0258 (12)	0.0218 (12)	0.0237 (12)	-0.0042 (10)	0.0029 (9)	-0.0007 (9)
C11	0.0183 (11)	0.0328 (14)	0.0330 (14)	-0.0036 (10)	-0.0004 (10)	-0.0013 (11)

supplementary materials

C12	0.0359 (15)	0.0201 (11)	0.0311 (14)	-0.0012 (11)	-0.0019 (11)	0.0030 (10)
C13	0.0343 (15)	0.0339 (15)	0.0403 (16)	-0.0016 (13)	-0.0050 (12)	0.0139 (13)
C14	0.0436 (17)	0.0312 (15)	0.0365 (16)	0.0045 (13)	-0.0029 (13)	0.0103 (12)
C15	0.0474 (19)	0.054 (2)	0.0369 (17)	0.0059 (17)	-0.0025 (14)	0.0178 (15)
C16	0.0428 (17)	0.0348 (15)	0.0298 (14)	-0.0013 (13)	-0.0064 (12)	0.0079 (12)
C17	0.0480 (19)	0.059 (2)	0.0334 (16)	0.0098 (17)	-0.0005 (14)	0.0101 (15)
Geometric parar	neters (Å, °)					
Br1-C17		1.947 (3)	С9—(212	1.52	7 (4)
O1—C8		1.221 (3)	С9—(C10	1.53	1 (4)
O2—C10		1.222 (3)	C9—I	-19	0.98	00
N1—C8		1.373 (3)	C11-	-H11A	0.96	00
N1—C1		1.419 (3)	C11-	-H11B	0.96	00
N1—C7		1.469 (3)	C11-	-H11C	0.96	00
N2-C10		1.359 (3)	C12—	-C13	1.51	4 (4)
N2—C6		1.420 (3)	C12—	-H12A	0.97	00
N2-C11		1.472 (3)	C12—	-H12B	0.97	00
C1—C6		1.402 (3)	C13—	-C14	1.53	3 (4)
C1—C2		1.402 (4)	C13—	-H13A	0.97	00
С2—С3		1.380 (4)	C13—	-H13B	0.97	00
С2—Н2		0.9300	C14—	-C15	1.51	1 (5)
C3—C4		1.396 (4)	C14—	-H14A	0.97	00
С3—Н3		0.9300	C14—	-H14B	0.97	00
C4—C5		1.382 (4)	C15—	-C16	1.51	7 (4)
C4—H4		0.9300	C15—	-H15A	0.97	00
C5—C6		1.395 (4)	C15—	-H15B	0.97	00
С5—Н5		0.9300	C16—	-C17	1.50	5 (5)
C7—H7A		0.9600	C16—	-H16A	0.97	00
С7—Н7В		0.9600	C16—	-H16B	0.97	00
С7—Н7С		0.9600	C17—	-H17A	0.97	00
С8—С9		1.526 (4)	C17—	-H17B	0.97	00
C8—N1—C1		123.5 (2)	N2—	C11—H11A	109.	5
C8—N1—C7		118.6 (2)	N2—4	C11—H11B	109.	5
C1—N1—C7		117.7 (2)	H11A	—C11—H11B	109.	5
C10—N2—C6		123.5 (2)	N2—	C11—H11C	109.	5
C10—N2—C11		118.3 (2)	H11A		109.	5
C6—N2—C11		118.0 (2)	H11B	—С11—Н11С	109.	5
C6—C1—C2		118.9 (2)	C13—	-С12—С9	113.	7 (2)
C6-C1-N1		122.3 (2)	C13—	-C12—H12A	108.	8
C2-C1-N1		118.7 (2)	С9—(С12—Н12А	108.	8
C3—C2—C1		120.9 (2)	C13—	-C12—H12B	108.	8
С3—С2—Н2		119.5	С9—(С12—Н12В	108.	8
С1—С2—Н2		119.5	H12A	—С12—Н12В	107.	7
C2—C3—C4		120.2 (2)	C12—	-C13—C14	113.	4 (3)
С2—С3—Н3		119.9	C12—	-C13—H13A	108.	9
С4—С3—Н3		119.9	C14—	-C13—H13A	108.	9
C5—C4—C3		119.3 (2)	C12—	-C13—H13B	108.	9
С5—С4—Н4		120.4	C14—	-C13—H13B	108.	9

C3—C4—H4	120.4	H13A—C13—H13B	107.7
C4—C5—C6	121.4 (2)	C15—C14—C13	112.4 (3)
C4—C5—H5	119.3	C15—C14—H14A	109.1
С6—С5—Н5	119.3	C13—C14—H14A	109.1
C5—C6—C1	119.4 (2)	C15—C14—H14B	109.1
C5—C6—N2	118.9 (2)	C13—C14—H14B	109.1
C1—C6—N2	121.7 (2)	H14A—C14—H14B	107.9
N1—C7—H7A	109.5	C14—C15—C16	115.0 (3)
N1—C7—H7B	109.5	С14—С15—Н15А	108.5
H7A—C7—H7B	109.5	С16—С15—Н15А	108.5
N1—C7—H7C	109.5	C14—C15—H15B	108.5
Н7А—С7—Н7С	109.5	C16—C15—H15B	108.5
H7B—C7—H7C	109.5	H15A—C15—H15B	107.5
O1—C8—N1	122.4 (2)	C17—C16—C15	110.6 (3)
O1—C8—C9	122.8 (2)	С17—С16—Н16А	109.5
N1—C8—C9	114.8 (2)	C15—C16—H16A	109.5
C12—C9—C8	114.0 (2)	С17—С16—Н16В	109.5
C12—C9—C10	111.3 (2)	C15—C16—H16B	109.5
C8—C9—C10	105.0 (2)	H16A—C16—H16B	108.1
С12—С9—Н9	108.8	C16C17Br1	113.1 (2)
С8—С9—Н9	108.8	С16—С17—Н17А	109.0
С10—С9—Н9	108.8	Br1—C17—H17A	109.0
O2—C10—N2	122.4 (3)	С16—С17—Н17В	109.0
O2—C10—C9	122.3 (2)	Br1—C17—H17B	109.0
N2-C10-C9	115.3 (2)	H17A—C17—H17B	107.8
C8—N1—C1—C6	-47.6 (3)	C1—N1—C8—C9	2.9 (3)
C7—N1—C1—C6	137.3 (2)	C7—N1—C8—C9	177.9 (2)
C8—N1—C1—C2	134.5 (3)	O1—C8—C9—C12	17.7 (4)
C7—N1—C1—C2	-40.6 (3)	N1-C8-C9-C12	-164.4 (2)
C6—C1—C2—C3	-1.0 (4)	O1—C8—C9—C10	-104.4 (3)
N1—C1—C2—C3	177.0 (2)	N1-C8-C9-C10	73.5 (3)
C1—C2—C3—C4	1.3 (4)	C6—N2—C10—O2	177.1 (3)
C2—C3—C4—C5	-0.6 (4)	C11—N2—C10—O2	2.0 (4)
C3—C4—C5—C6	-0.6 (4)	C6—N2—C10—C9	-5.0 (4)
C4—C5—C6—C1	0.9 (4)	C11—N2—C10—C9	179.9 (2)
C4—C5—C6—N2	-176.7 (2)	C12—C9—C10—O2	-18.6 (4)
C2-C1-C6-C5	-0.2 (4)	C8—C9—C10—O2	105.2 (3)
N1-C1-C6-C5	-178.1 (2)	C12—C9—C10—N2	163.5 (2)
C2C1C6N2	177.4 (2)	C8—C9—C10—N2	-72.7 (3)
N1—C1—C6—N2	-0.5 (4)	C8—C9—C12—C13	62.5 (3)
C10-N2-C6-C5	-133.0 (3)	C10-C9-C12-C13	-178.9 (2)
C11—N2—C6—C5	42.1 (3)	C9—C12—C13—C14	168.8 (3)
C10—N2—C6—C1	49.5 (4)	C12—C13—C14—C15	164.8 (3)
C11—N2—C6—C1	-135.5 (3)	C13—C14—C15—C16	171.7 (3)
C1—N1—C8—O1	-179.2 (2)	C14—C15—C16—C17	174.1 (3)
C7—N1—C8—O1	-4.1 (4)	C15-C16-C17-Br1	175.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C7—H7B···O1 ⁱ	0.96	2.58	3.430 (3)	147
C7—H7C···O2 ⁱⁱ	0.96	2.51	3.471 (3)	174
C11—H11B····O1 ⁱⁱ	0.96	2.60	3.551 (3)	173
Symmetry codes: (i) $-x+3/2$, $y+1/2$, $-z+1/2$	2; (ii) $-x+1/2, y+1/2, -z+$	1/2.		

Fig. 1